Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Am J Transplant ; 22(9): 2228-2236, 2022 09.
Article in English | MEDLINE | ID: covidwho-1846164

ABSTRACT

Limited data exists on the effectiveness of a third COVID-19 vaccine dose in solid organ transplant recipients. We conducted a population-based cohort study using linked healthcare databases from Ontario, Canada to answer this question. We included solid organ transplant recipients (n = 12,842) as of December 14, 2020, with follow-up until November 28, 2021. We used an extended Cox proportional hazards model with vaccination status, including BNT162b2, mRNA-1273, and ChAdOx1 vaccines, modeled as a time-dependent exposure. Individuals started in the unvaccinated category (reference) and could contribute person-time to first, second, and third doses. Over a median follow-up of 349 days, 12.7% (n = 1632) remained unvaccinated, 54.1% (n = 6953) received 3 doses, and 488 (3.8%) tested positive for SARS-CoV-2 (of which 260 [53.3%] had a clinically important outcome [i.e., hospitalization or death]). Adjusted vaccine effectiveness against infection was 31% (95% CI: 2, 51%), 46% (95% CI: 21, 63%), and 72% (95% CI: 43, 86%) for one, two, and three doses. Vaccine effectiveness against clinically important outcomes was 38% (95% CI: 4, 61%), 54% (95% CI: 23, 73%), and 67% (95% CI: 11, 87%). Vaccine effectiveness in solid organ transplant recipients is lower than the general population, however, vaccine effectiveness improved following a third dose.


Subject(s)
COVID-19 Vaccines , COVID-19 , Organ Transplantation , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Cohort Studies , Humans , Ontario/epidemiology , Organ Transplantation/adverse effects , SARS-CoV-2 , Transplant Recipients
2.
Am J Transplant ; 22(8): 2077-2082, 2022 08.
Article in English | MEDLINE | ID: covidwho-1745981

ABSTRACT

Estimating the total coronavirus disease 2019 (COVID-19) mortality burden of solid organ transplant recipients (SOTRs), both directly through COVID-19 infection and indirectly through other impacts on the healthcare system and society, is critical for understanding the disease's impact on the SOTR population. Using SRTR data, we modeled expected mortality risk per month pre-COVID (January 2015-February 2020) for kidney/liver/heart/lung SOTRs, and compared monthly COVID-era deaths (March 2020-March 2021) to expected rates, overall and among subgroups. Deaths above expected rates were designated "excess deaths." Between March 2020 and March 2021, there were 3739/827/265/252 excess deaths among kidney/liver/heart/lung SOTRs, respectively, representing a 41.2%/27.4%/18.5%/15.0% increase above expected deaths. 93.0% of excess deaths occurred in patients age≥50. The observed:expected ratio was highest among Hispanic SOTRs (1.82) and lowest among White SOTRs (1.20); 56.0% of excess deaths occurred among Black or Hispanic SOTRs. 64.7% of excess deaths occurred among patients who had survived ≥5 years post-transplant. Excess deaths peaked in January 2021; geographic distribution of excess deaths broadly mirrored COVID-19 incidence. COVID-19 likely caused over 5000 excess deaths among SOTRs in the US in a 13-month period, representing 1 in 75 SOTRs and a substantial proportion of all deaths among SOTRs during this time. SOTRs will remain at elevated mortality risk until the COVID-19 pandemic can be controlled.


Subject(s)
COVID-19 , Organ Transplantation , COVID-19/epidemiology , Humans , Incidence , Middle Aged , Organ Transplantation/adverse effects , Pandemics , Transplant Recipients
3.
Am J Transplant ; 22(3): 801-812, 2022 03.
Article in English | MEDLINE | ID: covidwho-1550798

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination may fail to sufficiently protect transplant recipients against coronavirus disease 2019 (COVID-19). We retrospectively evaluated COVID-19 in kidney transplant recipients (n = 226) after BNT162b2 mRNA vaccine administration. The control group consisted of unvaccinated patients (n = 194) during the previous pandemic wave. We measured anti-spike protein immunoglobulin G (IgG) levels and cellular responses, using enzyme-linked immunosorbent spot assay, in a prospective cohort after vaccination (n = 31) and recovery from COVID-19 (n = 19). COVID-19 was diagnosed in 37 (16%) vaccinated and 43 (22%) unvaccinated patients. COVID-19 severity was similar in both groups, with patients exhibiting a comparable need for hospitalization (41% vs. 40%, p = 1.000) and mortality (14% vs. 9%, p = .726). Short posttransplant periods were associated with COVID-19 after vaccination (p < .001). Only 5 (16%) patients achieved positive SARS-CoV-2 IgG after vaccination, and 17 (89%, p < .001) recovered from COVID-19 (median IgG levels, 0.6 vs. 52.5 AU/ml, p < .001). A cellular response following vaccination was present in the majority (n = 22, 71%), with an increase in interleukin 2 secreting T cells (p < .001). Despite detectable T cell immunity after mRNA vaccination, kidney transplant recipients remained at a high risk of severe COVID-19. Humoral responses induced by vaccination were significantly lower than that after COVID-19.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Viral , BNT162 Vaccine , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Incidence , Kidney Transplantation/adverse effects , Pandemics , Prospective Studies , RNA, Messenger , Retrospective Studies , SARS-CoV-2 , Transplant Recipients , Vaccines, Synthetic , mRNA Vaccines
4.
Am J Transplant ; 21(12): 4032-4042, 2021 12.
Article in English | MEDLINE | ID: covidwho-1360447

ABSTRACT

COVID-19 has been associated with acute kidney injury and published reports of native kidney biopsies have reported diverse pathologies. Case series directed specifically to kidney allograft biopsy findings in the setting of COVID-19 are lacking. We evaluated 18 kidney transplant recipients who were infected with SARS-CoV-2 and underwent allograft biopsy. Patients had a median age of 55 years, six were female, and five were Black. Fifteen patients developed COVID-19 pneumonia, of which five required mechanical ventilation. Notably, five of 11 (45%) biopsies obtained within 1 month of positive SARS-CoV-2 PCR showed acute rejection (four with arteritis, three of which were not associated with reduced immunosuppression). The remaining six biopsies revealed podocytopathy (n = 2, collapsing glomerulopathy and lupus podocytopathy), acute tubular injury (n = 2), infarction (n = 1), and transplant glomerulopathy (n = 1). Biopsies performed >1 month after positive SARS-CoV-2 PCR revealed collapsing glomerulopathy (n = 1), acute tubular injury (n = 1), and nonspecific histologic findings (n = 5). No direct viral infection of the kidney allograft was detected by immunohistochemistry, in situ hybridization, or electron microscopy. On follow-up, two patients died and most patients showed persistent allograft dysfunction. In conclusion, we demonstrate diverse causes of kidney allograft dysfunction after COVID-19, the most common being acute rejection with arteritis.


Subject(s)
Acute Kidney Injury , COVID-19 , Allografts , Biopsy , Female , Graft Rejection/etiology , Humans , Kidney , Middle Aged , SARS-CoV-2
5.
Am J Transplant ; 21(8): 2890-2894, 2021 08.
Article in English | MEDLINE | ID: covidwho-1297494

ABSTRACT

Current guidelines recommend deferring liver transplantation (LT) in patients with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection until clinical improvement occurs and two PCR tests collected at least 24 hours apart are negative. We report a case of an 18-year-old, previously healthy African-American woman diagnosed with COVID-19, who presents with acute liver failure (ALF) requiring urgent LT in the context of SARS-CoV-2 polymerase chain reaction (PCR) positivity. The patient was thought to have acute Wilsonian crisis on the basis of hemolytic anemia, alkaline phosphatase:bilirubin ratio <4, AST:ALT ratio >2.2, elevated serum copper, and low uric acid, although an unusual presentation of COVID-19 causing ALF could not be excluded. After meeting criteria for status 1a listing, the patient underwent successful LT, despite ongoing SARS-CoV-2 PCR positivity. Remdesivir was given immediately posttransplant, and mycophenolate mofetil was withheld initially and the SARS-CoV-2 PCR test eventually became negative. Three months following transplantation, the patient has made a near-complete recovery. This case highlights that COVID-19 with SARS-CoV-2 PCR positivity may not be an absolute contraindication for transplantation in ALF. Criteria for patient selection and timing of LT amid the COVID-19 pandemic need to be validated in future studies.


Subject(s)
COVID-19 , Liver Failure, Acute , Liver Transplantation , Adolescent , Female , Humans , Liver Failure, Acute/etiology , Liver Failure, Acute/surgery , Liver Transplantation/adverse effects , Pandemics , Polymerase Chain Reaction , SARS-CoV-2
7.
Am J Transplant ; 21(8): 2727-2739, 2021 08.
Article in English | MEDLINE | ID: covidwho-1243589

ABSTRACT

According to preliminary data, seroconversion after mRNA SARS-CoV-2 vaccination might be unsatisfactory in Kidney Transplant Recipients (KTRs). However, it is unknown if seronegative patients develop at least a cellular response that could offer a certain grade of protection against SARS-CoV-2. To answer this question, we prospectively studied 148 recipients of either kidney (133) or kidney-pancreas (15) grafts with assessment of IgM/IgG spike (S) antibodies and ELISpot against the nucleocapside (N) and the S protein at baseline and 2 weeks after receiving the second dose of the mRNA-1273 (Moderna) vaccine. At baseline, 31 patients (20.9%) had either IgM/IgG or ELISpot positivity and were considered to be SARS-CoV-2-pre-immunized, while 117 (79.1%) patients had no signs of either cellular or humoral response and were considered SARS-CoV-2-naïve. After vaccination, naïve patients who developed either humoral or cellular response were finally 65.0%, of which 29.9% developed either IgG or IgM and 35.0% S-ELISpot positivity. Factors associated with vaccine unresponsiveness were diabetes and treatment with antithymocytes globulins during the last year. Side effects were consistent with that of the pivotal trial and no DSAs developed after vaccination. In conclusion, mRNA-1273 SARS-CoV-2 vaccine elicits either cellular or humoral response in almost two thirds of KTRs.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Viral , COVID-19 Vaccines , Humans , Kidney Transplantation/adverse effects , RNA, Messenger/genetics , SARS-CoV-2
8.
Am J Transplant ; 21(5): 1789-1800, 2021 05.
Article in English | MEDLINE | ID: covidwho-897176

ABSTRACT

Solid organ transplant (SOT) recipients are exposed to respiratory viral infection (RVI) during seasonal epidemics; however, the associated burden of disease has not been fully characterized. We describe the epidemiology and outcomes of RVI in a cohort enrolling 3294 consecutive patients undergoing SOT from May 2008 to December 2015 in Switzerland. Patient and allograft outcomes, and RVI diagnosed during routine clinical practice were prospectively collected. Median follow-up was 3.4 years (interquartile range 1.61-5.56). Six hundred ninety-six RVIs were diagnosed in 151/334 (45%) lung and 265/2960 (9%) non-lung transplant recipients. Cumulative incidence was 60% (95% confidence interval [CI] 53%-69%) in lung and 12% (95% CI 11%-14%) in non-lung transplant recipients. RVI led to 17.9 (95% CI 15.7-20.5) hospital admissions per 1000 patient-years. Intensive care unit admission was required in 4% (27/691) of cases. Thirty-day all-cause case fatality rate was 0.9% (6/696). Using proportional hazard models we found that RVI (adjusted hazard ratio [aHR] 2.45; 95% CI 1.62-3.73), lower respiratory tract RVI (aHR 3.45; 95% CI 2.15-5.52), and influenza (aHR 3.57; 95% CI 1.75-7.26) were associated with graft failure or death. In this cohort of SOT recipients, RVI caused important morbidity and may affect long-term outcomes, underlying the need for improved preventive strategies.


Subject(s)
Influenza, Human , Organ Transplantation , Respiratory Tract Infections , Cohort Studies , Humans , Influenza, Human/epidemiology , Organ Transplantation/adverse effects , Prospective Studies , Respiratory Tract Infections/epidemiology , Respiratory Tract Infections/etiology , Seasons , Switzerland , Transplant Recipients
9.
Am J Transplant ; 21(8): 2762-2773, 2021 08.
Article in English | MEDLINE | ID: covidwho-1165729

ABSTRACT

Solid organ transplant (SOT) recipients run a high risk for adverse outcomes from COVID-19, with reported mortality around 19%. We retrospectively reviewed all known Swedish SOT recipients with RT-PCR confirmed COVID-19 between March 1 and November 20, 2020 and analyzed patient characteristics, management, and outcome. We identified 230 patients with a median age of 54.0 years (13.2), who were predominantly male (64%). Most patients were hospitalized (64%), but 36% remained outpatients. Age >50 and male sex were among predictors of transition from outpatient to inpatient status. National early warning Score 2 (NEWS2) at presentation was higher in non-survivors. Thirty-day all-cause mortality was 9.6% (15.0% for inpatients), increased with age and BMI, and was higher in men. Renal function decreased during COVID-19 but recovered in most patients. SARS-CoV-2 antibodies were identified in 78% of patients at 1-2 months post-infection. Nucleocapsid-specific antibodies decreased to 38% after 6-7 months, while spike-specific antibody responses were more durable. Seroprevalence in 559 asymptomatic patients was 1.4%. Many patients can be managed on an outpatient basis aided by risk stratification with age, sex, and NEWS2 score. Factors associated with adverse outcomes include older age, male sex, greater BMI, and a higher NEWS2 score.


Subject(s)
COVID-19 , Organ Transplantation , Aged , Cohort Studies , Humans , Male , Middle Aged , Organ Transplantation/adverse effects , Retrospective Studies , SARS-CoV-2 , Seroepidemiologic Studies , Sweden/epidemiology , Transplant Recipients
10.
Am J Transplant ; 21(8): 2749-2761, 2021 08.
Article in English | MEDLINE | ID: covidwho-1147230

ABSTRACT

The description of protective humoral and T cell immune responses specific against SARS-CoV-2 has been reported among immunocompetent (IC) individuals developing COVID-19 infection. However, its characterization and determinants of poorer outcomes among the at-risk solid organ transplant (SOT) patient population have not been thoroughly investigated. Cytokine-producing T cell responses, such as IFN-γ, IL-2, IFN-γ/IL-2, IL-6, IL-21, and IL-5, against main immunogenic SARS-CoV-2 antigens and IgM/IgG serological immunity were tracked in SOT (n = 28) during acute infection and at two consecutive time points over the following 40 days of convalescence and were compared to matched IC (n = 16) patients admitted with similar moderate/severe COVID-19. We describe the development of a robust serological and functional T cell immune responses against SARS-CoV-2 among SOT patients, similar to IC patients during early convalescence. However, at the infection onset, SOT displayed lower IgG seroconversion rates (77% vs. 100%; p = .044), despite no differences on IgG titers, and a trend toward decreased SARS-CoV-2-reactive T cell frequencies, especially against the membrane protein (7 [0-34] vs. 113 [15-245], p = .011, 2 [0-9] vs. 45 [5-74], p = .009, and 0 [0-2] vs. 13 [1-24], p = .020, IFN-γ, IL-2, and IFN-γ/IL-2 spots, respectively). In summary, our data suggest that despite a certain initial delay, SOT population achieve comparable functional immune responses than the general population after moderate/severe COVID-19.


Subject(s)
COVID-19 , Organ Transplantation , Antibodies, Viral , Antibody Formation , Convalescence , Humans , SARS-CoV-2 , T-Lymphocytes
11.
Am J Transplant ; 21(9): 3101-3111, 2021 09.
Article in English | MEDLINE | ID: covidwho-1105194

ABSTRACT

The new lung allocation policy has led to an increase in distant donors and consequently enhanced logistical burden of procuring organs. Though early single-center studies noted similar outcomes between same-team transplantation (ST, procuring team from transplanting center) and different-team transplantation (DT, procuring team from different center), the efficacy of DT in the contemporary era remains unclear. In this study, we evaluated the trend of DT, rate of transplanting both donor lungs, 1-year graft survival, and risk of Grade 3 primary graft dysfunction (PGD) using the Scientific Registry of Transplant Recipient (SRTR) database from 2006 to 2018. A total of 21619 patients (DT 2085, 9.7%) with 19837 donors were included. Utilization of DT decreased from 15.9% in 2006 to 8.5% in 2018. Proportions of two-lung donors were similar between the groups, and DT had similar 1-year graft survival as ST for both double (DT, HR 1.108, 95% CI 0.894-1.374) and single lung transplants (DT, HR 1.094, 95% CI 0.931-1.286). Risk of Grade 3 PGD was also similar between ST and DT. Given our results, expanding DT may be a feasible option for improving lung procurement efficiency in the current era, particularly in light of the COVID-19 pandemic.


Subject(s)
Health Policy , Lung Transplantation , Resource Allocation , Tissue and Organ Procurement , COVID-19 , Graft Survival , Humans , Lung , Pandemics , Tissue Donors
12.
Am J Transplant ; 21(3): 1285-1294, 2021 03.
Article in English | MEDLINE | ID: covidwho-1035480

ABSTRACT

Higher rates of severe COVID-19 have been reported in kidney transplant recipients (KTRs) compared to nontransplant patients. We aimed to determine if poorer outcomes were specifically related to chronic immunosuppression or underlying comorbidities. We used a 1:1 propensity score-matching method to compare survival and severe disease-free survival (defined as death and/or need for intensive care unit [ICU]) incidence in hospitalized KTRs and nontransplant control patients between February 26 and May 22, 2020. Patients were matched for risk factors of severe COVID-19: age, sex, body mass index, diabetes mellitus, preexisting cardiopathy, chronic lung disease, and basal renal function. We included 100 KTRs (median age [interquartile range (IQR)]) 64.7 years (55.3-73.1) in three French transplant centers. After a median follow-up of 13 days (7-30), transfer to ICU was required for 34 patients (34%) and death occurred in 26 patients (26%). Overall, 43 patients (43%) developed a severe disease during a median follow-up of 8.5 days (2-14). Propensity score matching to a large French cohort of 2017 patients hospitalized in 24 centers, revealed that survival was similar between KTRs and matched nontransplant patients with respective 30-day survival of 62.9% and 71% (p = .38) and severe disease-free 30-day survival of 50.6% and 47.5% (p = .91). These findings suggest that severity of COVID-19 in KTRs is related to their associated comorbidities and not to chronic immunosuppression.


Subject(s)
COVID-19/epidemiology , Immunocompromised Host , Kidney Transplantation , SARS-CoV-2 , Transplant Recipients , Aged , Comorbidity , Female , Humans , Intensive Care Units/statistics & numerical data , Male , Middle Aged , Pandemics , Retrospective Studies
13.
Am J Transplant ; 21(5): 1937-1943, 2021 05.
Article in English | MEDLINE | ID: covidwho-991160

ABSTRACT

Graft artery stenosis can have a significant short- and long-term negative impact on renal graft function. From the beginning of the COVID-19 pandemic, we noticed an unusual number of graft arterial anomalies following kidney transplant (KTx) in children. Nine children received a KTx at our center between February and July 2020, eight boys and one girl, of median age of 10 years. Seven presented Doppler features suggesting arterial stenosis, with an unusual extensive pattern. For comparison, over the previous 5-year period, persistent spectral Doppler arterial anomalies (focal anastomotic stenoses) following KTx were seen in 5% of children at our center. We retrospectively evidenced severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in five of seven children with arterial stenosis. The remaining two patients had received a graft from a deceased adolescent donor with a positive serology at D0. These data led us to suspect immune postviral graft vasculitis, triggered by SARS-CoV-2. Because the diagnosis of COVID-19 is challenging in children, we recommend pretransplant monitoring of graft recipients and their parents by monthly RT-PCR and serology. We suggest balancing the risk of postviral graft vasculitis against the risk of prolonged dialysis when considering transplantation in a child during the pandemic.


Subject(s)
Arteries/pathology , COVID-19/complications , Kidney Transplantation , Kidney/blood supply , Pandemics , Adolescent , Child , Constriction, Pathologic/pathology , Female , Humans , Male , Retrospective Studies
14.
Am J Transplant ; 21(7): 2498-2508, 2021 07.
Article in English | MEDLINE | ID: covidwho-960766

ABSTRACT

Immunosuppression and comorbidities might place solid organ transplant (SOT) recipients at higher risk from COVID-19, as suggested by recent case series. We compared 45 SOT vs. 2427 non-SOT patients who were admitted with COVID-19 to our health-care system (March 1, 2020 - August 21, 2020), evaluating hospital length-of-stay and inpatient mortality using competing-risks regression. We compared trajectories of WHO COVID-19 severity scale using mixed-effects ordinal logistic regression, adjusting for severity score at admission. SOT and non-SOT patients had comparable age, sex, and race, but SOT recipients were more likely to have diabetes (60% vs. 34%, p < .001), hypertension (69% vs. 44%, p = .001), HIV (7% vs. 1.4%, p = .024), and peripheral vascular disorders (19% vs. 8%, p = .018). There were no statistically significant differences between SOT and non-SOT in maximum illness severity score (p = .13), length-of-stay (sHR: 0.9 1.11.4 , p = .5), or mortality (sHR: 0.1 0.41.6 , p = .19), although the severity score on admission was slightly lower for SOT (median [IQR] 3 [3, 4]) than for non-SOT (median [IQR] 4 [3-4]) (p = .042) Despite a higher risk profile, SOT recipients had a faster decline in disease severity over time (OR = 0.76 0.810.86 , p < .001) compared with non-SOT patients. These findings have implications for transplant decision-making during the COVID-19 pandemic, and insights about the impact of SARS-CoV-2 on immunosuppressed patients.


Subject(s)
COVID-19 , Organ Transplantation , Humans , Inpatients , Organ Transplantation/adverse effects , Pandemics , Retrospective Studies , SARS-CoV-2 , Transplant Recipients
15.
Am J Transplant ; 21(3): 1295-1303, 2021 03.
Article in English | MEDLINE | ID: covidwho-950808

ABSTRACT

There are no studies which have compared the risk of severe COVID-19 and related mortality between transplant recipients and nontransplant patients. We enrolled two groups of patients hospitalized for COVID-19, that is, kidney transplant recipients (KTR) from the French Registry of Solid Organ Transplant (n = 306) and a single-center cohort of nontransplant patients (n = 795). An analysis was performed among subgroups matched for age and risk factors for severe COVID-19 or mortality. Severe COVID-19 was defined as admission (or transfer) to an intensive care unit, need for mechanical ventilation, or death. Transplant recipients were younger and had more comorbidities compared to nontransplant patients. They presented with higher creatinine levels and developed more episodes of acute kidney injury. After matching, the 30-day cumulative incidence of severe COVID-19 did not differ between KTR and nontransplant patients; however, 30-day COVID-19-related mortality was significantly higher in KTR (17.9% vs 11.4%, respectively, p = .038). Age >60 years, cardiovascular disease, dyspnea, fever, lymphopenia, and C-reactive protein (CRP) were associated with severe COVID-19 in univariate analysis, whereas transplant status and serum creatinine levels were not. Age >60 years, hypertension, cardiovascular disease, diabetes, CRP >60 mg/L, lymphopenia, kidney transplant status (HR = 1.55), and creatinine level >115 µmol/L (HR = 2.32) were associated with COVID-19-related mortality in univariate analysis. In multivariable analysis, cardiovascular disease, dyspnea, and fever were associated with severe disease, whereas age >60 years, cardiovascular disease, dyspnea, fever, and creatinine level>115 µmol/L retained their independent associations with mortality. KTR had a higher COVID-19-related mortality compared to nontransplant hospitalized patients.


Subject(s)
COVID-19/diagnosis , Graft Rejection/epidemiology , Kidney Transplantation , Pandemics , Propensity Score , Registries , Transplant Recipients/statistics & numerical data , Aged , COVID-19/epidemiology , Comorbidity , Female , France/epidemiology , Graft Rejection/prevention & control , Humans , Immunosuppression Therapy/methods , Immunosuppressive Agents/therapeutic use , Incidence , Intensive Care Units , Male , Middle Aged , Retrospective Studies , Risk Factors , SARS-CoV-2 , Severity of Illness Index
16.
Am J Transplant ; 21(5): 1816-1824, 2021 05.
Article in English | MEDLINE | ID: covidwho-885775

ABSTRACT

This study describes the clinical presentation, treatment, and outcomes of SARS-CoV-2 infection in lung transplant recipients (LTRs). This is a multicenter, retrospective study of all adult LTRs with confirmed SARS-CoV-2 infection from March 4 until April 28, 2020 in six Spanish reference hospitals for lung transplantation. Clinical and radiological data, treatment characteristics, and outcomes were reviewed. Forty-four cases were identified in that period. The median time from transplantation was 4.2 (interquartile range: 1.11-7.3) years. Chest radiography showed acute parenchymal abnormalities in 32 (73%) cases. Hydroxychloroquine was prescribed in 41 (93%), lopinavir/ritonavir (LPV/r) in 14 (32%), and tocilizumab in 19 (43%) patients. There was a strong interaction between tacrolimus and LPV/r in all cases. Thirty-seven (84%) patients required some degree of respiratory support and/or oxygen therapy, and 13 (30%) were admitted to intermediate or intensive critical care units. Seventeen (39%) patients had died and 20 (45%) had been discharged at the time of the last follow-up. Deceased patients had a worse respiratory status and chest X-ray on admission and presented with higher D-dimer, interleukin-6, and lactate dehydrogenase levels. In this multicenter LTR cohort, SARS-CoV-2 presented with high mortality. Additionally, the severity of disease on presentation predicted subsequent mortality.


Subject(s)
COVID-19/epidemiology , Lung Transplantation , Transplant Recipients , Adult , Antiviral Agents/therapeutic use , COVID-19/mortality , Drug Combinations , Drug Interactions , Humans , Lopinavir , Lung , Retrospective Studies , Ritonavir , SARS-CoV-2 , Spain/epidemiology , Tacrolimus
17.
Am J Transplant ; 21(4): 1586-1596, 2021 04.
Article in English | MEDLINE | ID: covidwho-883239

ABSTRACT

It is unknown if solid organ transplant recipients are at higher risk for severe COVID-19. The management of a lung transplantation (LTx) program and the therapeutic strategies to adapt the immunosuppressive regimen and antiviral measures is a major issue in the COVID-19 era, but little is known about worldwide practice. We sent out to 180 LTx centers worldwide in June 2020 a survey with 63 questions, both regarding the management of a LTx program in the COVID-19 era and the therapeutic strategies to treat COVID-19 LTx recipients. We received a total of 78 responses from 15 countries. Among participants, 81% declared a reduction of the activity and 47% restricted LTx for urgent cases only. Sixteen centers observed deaths on waiting listed patients and eight centers performed LTx for COVID-19 disease. In 62% of the centers, COVID-19 was diagnosed in LTx recipients, most of them not severe cases. The most common immunosuppressive management included a decreased dose or pausing of the cell cycle inhibitors. Remdesivir, hydroxychloroquine, and azithromycin were the most proposed antiviral strategies. Most of the centers have been affected by the COVID-19 pandemic and proposed an active therapeutic strategy to treat LTx recipients with COVID-19.


Subject(s)
COVID-19/diagnosis , Lung Transplantation , Pandemics , COVID-19/therapy , Humans , Immunosuppressive Agents/therapeutic use , Risk Factors , Transplant Recipients , Waiting Lists
SELECTION OF CITATIONS
SEARCH DETAIL